Danyal Mohaddes

Senior research scientist \cdot Computational physics \cdot Complex reacting flows Boston, MA \cdot [danyal@mohaddes.dev] \cdot [Google Scholar] \cdot [LinkedIn]

I develop models to simulate complex systems, implement efficient code and deploy on highly parallelized architectures to generate large datasets. I use LLMs to accelerate my workflow and deep learning to model my data.

EDUCATION

Stanford University

Stanford, USA

Ph.D. in Mechanical Engineering

2017-2022

- Thesis: Numerical Simulation of Hot Surface Ignition and Combustion of Fuel Sprays
- Advisor: Prof. Matthias Ihme
- Coursework: Numerical mathematics, reacting flow physics, parallel and GPU programming, deep learning

Stanford University

Stanford, USA

M.Sc. in Mechanical Engineering

2016-2018

- Concentration: Flow Physics and Computational Engineering

University of Toronto

Toronto, Canada

B.A.Sc. in Mechanical Engineering (High Honors, 3.9/4.0)

2011-2016

- Concentrations: Energy, Solid mechanics

EXPERIENCE

FM, Research Division

Boston, USA

2022 -

Senior Research Scientist, Fire Modeling

- Developed and implemented (C++) physics-based computational models of fire propagation for deployment on cloud-based (AWS) and on-premises high-performance computing (HPC) architectures [Open Source]
- Derived the first theoretical model of thermal runaway propagation (TRP) in lithium-ion battery (LIB) stacks [Paper]; collaborated with experimentalists on further development and validation [Paper] [Open Source]
- Developed a large language model (LLM) agent in LangChain/LangGraph to inspect simulation software using retrieval-augmented generation (RAG), and to set up, execute, and post-process fire dynamics simulations on HPC systems. Led and mentored an intern who contributed to the implementation. [NeurIPS workshop paper]
- Developed generative (GAN) and regressive (CNN) machine learning (ML) approaches (in PyTorch) and applied foundation models for image analysis (Meta AI's SAM2) for physical modeling of multiphase reacting fluid flows
- Served as the representative for the Research Division on FM's Responsible AI (RAI) Oversight Group, which gives guidance and feedback to teams implementing major AI projects across the company
- Implemented a development workflow across multiple research teams in Azure DevOps: version control, issue tracking, containerization (Docker), continuous integration, documentation

Arbury Labs, Inc.

Seattle, USA

Scientific Advisor (Remote)

2023-2024

- Provided research services to a startup developing a coaching application for sports leveraging computer vision and LLMs
- Developed interfaces to LLMs for app integration and implemented one/few-shot learning approaches for data analysis, human-machine-human interaction and feedback, synthetic data generation and program logic

Updated: 07/21/2025 Page 1 of 6

Stanford University Stanford, USA

Graduate Research Assistant under Prof. Matthias Ihme

2016-2022

- Extended a dynamic modeling framework and applied a global optimization algorithm for computationally efficient and physically accurate modeling of multiphase chemical effects in combustion simulations [Paper]

- Conducted high-fidelity modeling of flow physics using massively-parallel simulations [Paper], [Paper]
- Performed parallelized (C++/MPI/OpenMP) simulations of a Lagrangian-Eulerian system with over 6M degrees of freedom to model ignition of fuel leaks in aircraft in collaboration with Boeing [Paper]
- Developed a parallelized (C++/OpenMP) solver for highly stiff and coupled combustion PDEs [Open Source]
- Employed machine learning -based data analysis techniques in Python (TensorFlow) to analyze parametric sensitivities in numerical simulations of combustion problems [Paper]

Technische Universität München

Munich, Germany

Visiting Student Researcher under Prof. Oskar Haidn

Summer 2019

- Performed high-fidelity numerical modeling for gas turbine and rocket propulsion using C++-based software
- Supported by Stanford Graduate Internship and Research Program in Germany

Amec Foster Wheeler (now Wood plc.)

Toronto, Canada

Engineering Intern, Canadian Nuclear Division

Summer 2015

Programmed databases in Visual Basic for Applications (VBA) for risk analysis of thermal power plants

Syncrude Canada Ltd.

Edmonton, Canada

Research Intern, Division of Research and Development

2014-2015

- Performed economic analysis and developed business cases for upgrades to heavy industrial machinery

University of Toronto

Toronto, Canada

Undergraduate Research Assistant under Prof. David Sinton and Prof. Nasser Ashgriz

Summer 2013/2014

- Developed image-processing software for identifying and tracking droplet behavior in nuclear engineering experiments [Open Source, over 700 downloads]
- Developed and conducted microfluidic experiments for CO₂ sequestration [Paper]

University of Manitoba

Winnipeg, Canada

Undergraduate Research Assistant under Prof. Zahra Moussavi

Summer 2012

- Developed software and performed 3D graphics design for a custom C++-based virtual reality simulator for experiments in the early detection of Alzheimer's disease [Paper]

AWARDS, GRANTS AND HONORS

Most Collaborative Participant, Stanford FLAME AI Workshop

2023

2019

Boeing Research & Technology Strategic Universities Program, grant awarded to PI's lab to support my PhD 2018–2022

Natural Sciences and Engineering Research Council of Canada (NSERC) Postgraduate Scholarship

2019-2020

Graduate Internship and Research Program in Germany Departmental Graduate Engineering Fellowship Award

2016-2017

Editors' Choice article published in Analytical Chemistry

2014

Eight undergraduate research and academic scholarships

2011-2016

NSERC summer research award, U. Toronto Excellence Award for summer research, ASME student scholarship, SPE Canada student scholarship, SPE Calgary section student scholarship, Otto Holden scholarship, WJT Wright scholarship, Faculty admission scholarship

Updated: 07/21/2025 Page 2 of 6

Journal papers

Mohaddes, D., Wang, Y., "Theory and analysis of module-scale thermal runaway propagation," *Combustion and Flame*, vol. 279, p. 114327, 2025. DOI: https://doi.org/10.1016/j.combustflame.2025.114327.

Zeng, D., **Mohaddes, D.**, Gagnon, L., Wang, Y., "Modeling initiation and propagation of thermal runaway in pouch li-ion battery cells: Effects of heating rate and state-of-charge," *Proceedings of the Combustion Institute*, vol. 40, no. 1, p. 105 316, 2024. DOI: https://doi.org/10.1016/j.proci.2024.105316.

Mohaddes, D., Brouzet, D., Ihme, M., "Cost-constrained adaptive simulations of transient spray combustion in a gas turbine combustor," *Combustion and Flame*, vol. 249, p. 112530, 2023. DOI: 10.1016/j.combustflame. 2022.112530.

Mohaddes, D., Ihme, M., "Wall heat transfer and flame structure transitions in stagnating spray flames," *Proceedings of the Combustion Institute*, vol. 39, no. 2, pp. 2683–2692, 2023. DOI: 10.1016/j.proci.2022.08.037.

Mohaddes, D., Ihme, M., "On the hot surface ignition of a wall-stagnating spray flame," *Combustion and Flame*, vol. 240, p. 111 988, 2022. DOI: 10.1016/j.combustflame.2022.111988.

Dodd, M. S., **Mohaddes, D.**, Ferrante, A., Ihme, M., "Analysis of droplet evaporation in isotropic turbulence through droplet-resolved DNS," *International Journal of Heat and Mass Transfer*, vol. 172, p. 121 157, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121157.

Mohaddes, D., Boettcher, P., Ihme, M., "Hot surface ignition of a wall-impinging fuel spray: Modeling and analysis using large-eddy simulation," *Combustion and Flame*, vol. 228, pp. 443–456, 2021. DOI: 10.1016/j.combustflame.2021.02.025.

Mohaddes, D., Xie, W., Ihme, M., "Analysis of low-temperature chemistry in a turbulent swirling spray flame near lean blow-out," *Proceedings of the Combustion Institute*, vol. 38, no. 2, pp. 3435–3443, 2021. DOI: 10.1016/j.proci.2020.08.030.

Sobhani, S., Muhunthan, P., Boigné, E., **Mohaddes, D.**, Ihme, M., "Experimental feasibility of tailored porous media burners enabled via additive manufacturing," *Proceedings of the Combustion Institute*, vol. 38, no. 4, pp. 6713–6722, 2021. DOI: 10.1016/j.proci.2020.06.120.

Watson, L. M., Dunham, E. M., **Mohaddes, D.**, Labahn, J., Jaravel, T., Ihme, M., "Infrasound Radiation From Impulsive Volcanic Eruptions: Nonlinear Aeroacoustic 2D Simulations," *Journal of Geophysical Research:* Solid Earth, vol. 126, no. 9, pp. 1–28, 2021. DOI: 10.1029/2021JB021940.

Mohaddes, D., Chang, C. T., Ihme, M., "Thermodynamic cycle analysis of superadiabatic matrix-stabilized combustion for gas turbine engines," *Energy*, vol. 207, p. 118171, 2020. DOI: 10.1016/j.energy.2020.118171.

Boigne, E., Muhunthan, P., **Mohaddes, D.**, Wang, Q., Sobhani, S., Hinshaw, W., Ihme, M., "X-ray computed tomography for flame-structure analysis of laminar premixed flames," *Combustion and Flame*, vol. 200, pp. 142–154, 2019. DOI: 10.1016/j.combustflame.2018.11.015.

Sobhani, S., **Mohaddes, D.**, Boigne, E., Muhunthan, P., Ihme, M., "Modulation of heat transfer for extended flame stabilization in porous media burners via topology gradation," *Proceedings of the Combustion Institute*, vol. 37, no. 4, pp. 5697–5704, 2019. DOI: 10.1016/j.proci.2018.05.155.

Nguyen, P., **Mohaddes, D.**, Riordon, J., Fadaei, H., Lele, P., Sinton, D., "Fast Fluorescence-Based Microfluidic Method for Measuring Minimum Miscibility Pressure of CO2 in Crude Oils," *Analytical Chemistry*, vol. 87, no. 6, pp. 3160–3164, 2015. DOI: 10.1021/ac5047856.

Byagowi, A., **Mohaddes, D.**, Moussavi, Z., "Design and Application of a Novel Virtual Reality Navigational Technology (VRNChair)," *Journal of Experimental Neuroscience*, vol. 8, no. 1, JEN.S13448, 2014. DOI: 10.4137/JEN.S13448.

Updated: 07/21/2025 Page 3 of 6

Conference podium presentations

Mohaddes, D., Wang, Y., Module-scale thermal runaway propagation: Theory and analysis, 14th US National Combustion Meeting, 2025.

Mohaddes, D., Wang, Y., Toward fire dynamics simulations of thermal runaway propagation in battery energy storage systems, 20th OpenFOAM Workshop, 2025.

Mohaddes, D., Zeng, D., Gagnon, L., Krisman, A., Ren, N., Lithium-ion battery modeling: From cell-level thermal runaway to multi-module fires, FM Global Open Source CFD Fire Modeling Workshop, 2024.

Mohaddes, D., Ihme, M., Adaptive combustion modeling of a gas turbine engine near lean blow-out, International Conference on Numerical Combustion, 2022.

Mohaddes, D., Ihme, M., Analysis of the hot surface ignition limits of a wall-stagnating fuel spray, Spring Meeting of the Western States Section of the Combustion Institute, 2022.

Mohaddes, D., Ihme, M., Wall heat transfer and flame structure transitions in stagnating spray flames, 39th International Symposium on Combustion, 2022.

Mohaddes, D., Ihme, M., Parametric study of hot surface ignition of an impinging fuel spray using large-eddy simulation, APS Division of Fluid Dynamics Annual Meeting, 2020.

Mohaddes, D., Xie, W., Ihme, M., Analysis of low-temperature chemistry in a turbulent swirling spray flame near lean blow-out, 38th International Symposium on Combustion, 2020.

Mohaddes, D., Ihme, M., Resolution requirements for LES modeling of a methanol pool fire, FM Global Open Source CFD Fire Modeling Workshop, 2019.

Mohaddes, D., Ihme, M., Damazo, J., Boettcher, P., Moravec, B., Computational modeling of compartment fires for aircraft safety, International Conference on Numerical Combustion, 2019.

Mohaddes, D., Xie, W., Ihme, M., Flame structure analysis and flame stabilization in a turbulent swirling spray flame, APS Division of Fluid Dynamics Annual Meeting, 2019.

Mohaddes, D., Ihme, M., Computational modeling of accidental fire spread in under-ventilated compartments, APS Division of Fluid Dynamics Annual Meeting, 2018.

Mohaddes, D., Sobhani, S., Boigne, E., Muhunthan, P., Ihme, M., Experimental investigation of flame stability in porous media burners, APS Division of Fluid Dynamics Annual Meeting, 2017.

Mohaddes, D., Asghriz, N., Study of vapor bubbles in horizontal PHWR cores, Canadian Society for Mechanical Engineering International Congress, 2014.

Other conference contributions

Xiao, T., Mohaddes, D., Brown, W., Xiong, G., Wang, Y., Modeling of small pouch li-ion battery cells: Thermal runaway initiation and propagation, 14th US National Combustion Meeting, 2025.

Xu, L., Mohaddes, D., Wang, Y., "LLM agent for fire dynamics simulations," in Neurips 2024 Workshop Foundation Models for Science: Progress, Opportunities, and Challenges, 2024.

Zeng, D., Mohaddes, D., Gagnon, L., Wang, Y., Modeling initiation and propagation of thermal runaway in pouch Li-ion battery cells: Effects of heating rate and state-of-charge, 40th International Symposium on Combustion, 2024.

Mohaddes, D., Lu, X., Krisman, A., Ren, N., Devops for fire modeling research, FM Global Open Source CFD Fire Modeling Workshop, Poster, 2023.

Mohaddes, D., Ren, N., Wang, Y., Firefoam simulation of the macfp-3 parallel-panel target, 3rd Workshop of the Measurement and Computation of Fire Phenomena (MaCFP) Database, Poster, 2023.

Updated: 07/21/2025 Page 4 of 6

Bonanni, M., **Mohaddes, D.**, Ly, N., Perakis, N., Hardi, J., Börner, M., Ihme, M., "Toward Numerical Investigation of Ignition and Combustion Transition in a Subscale LOX/Methane Rocket Combustor," in *AIAA Scitech Forum*, 2021. DOI: 10.2514/6.2021-1141.

Sobhani, S., Muhunthan, P., Boigné, E., **Mohaddes, D.**, Ihme, M., Experimental feasibility of tailored porous media burners enabled via additive manufacturing, 38th International Symposium on Combustion, 2020.

Muhunthan, P., Sobhani, S., Boigne, E., **Mohaddes, D.**, Ihme, M., Experimental investigation of combustion in porous media burners with tailored matrix-structure using additive manufacturing, APS Division of Fluid Dynamics Annual Meeting, 2019.

Sobhani, S., Muhunthan, P., **Mohaddes, D.**, Boigne, E., Cheng, Z., Ihme, M., *Enabling tailored porous media burners via additive manufacturing*, Proceedings of the 11th US National Combustion Meeting, 2019.

Ihme, M., Mohaddes, D., Toward the modeling and analysis of oxygen-controlled turbofan engine fan case compartment fires, FM Global Open Source CFD Fire Modeling Workshop, 2018.

Sobhani, S., **Mohaddes, D.**, Boigne, E., Muhunthan, P., Ihme, M., Modulation of heat transfer for extended flame stabilization in porous media burners via topology gradation, 37th International Symposium on Combustion, 2018.

Boigne, E., Muhunthan, P., **Mohaddes, D.**, Sobhani, S., Parkinson, D., Barnard, H., Ihme, M., *Pore-scale and topology analysis of flame stabilization inside inert porous media using x-ray microtomography*, APS Division of Fluid Dynamics Annual Meeting, 2017.

Muhunthan, P., Sobhani, S., Boigne, E., **Mohaddes, D.**, Hinshaw, W., Ihme, M., *Calibration of x-ray computed tomography (xct) using a flat flame burner*, APS Division of Fluid Dynamics Annual Meeting, 2017.

Sobhani, S., Muhunthan, P., Boigne, E., **Mohaddes, D.**, Ihme, M., *Investigation of pore-scale flow physics in porous media burners*, APS Division of Fluid Dynamics Annual Meeting, 2017.

Byagowi, A., **Mohaddes, D.**, McLeod, R. D., Accidental emergence within an agent based model: Simulation of agent interactions in an emergency situation, Proceedings of the 17th International Conference on Computer Games (CGAMES), 2012. DOI: 10.1109/CGames.2012.6314574.

Public repositories

khod-kaar – (Python) An early (\sim 2023) implementation of an LLM-based SWE agent with shell control from scratch. spray-HSI – (C++) Parallelized solver for unsteady multiphase reacting flows that are wall-impinging.

Professional Service

Peer review Proceedings of the Combustion Institute 7 reviews since 2022 Fire Safety Journal 6 reviews since 2023 3 reviews since 2021 Combustion and Flame 2 reviews since 2023 Combustion Science and Technology International Journal of Thermal Sciences 1 review since 2024 International Journal of Hydrogen Energy 1 review since 2023 Fuel 1 review since 2022 Journal of Engineering for Gas Turbines and Power 2 reviews since 2022 AIMS Energy 1 review since 2021

Session chair appointments

Updated: 07/21/2025 Page 5 of 6

14th US National Combustion Meeting: Computational and ML/AI-Data Driven Combustion	2025
Mentorship	
Leidong Xu, AI/ML Ph.D. summer intern at FM Research	2024
Matthew Bonanni, Ph.D. candidate at Stanford	2019-2022
Wai Tong Chung, Ph.D. candidate at Stanford	2018-2022
Priyanka Muhunthan, Ph.D. candidate at Stanford	2016-2019
Advisorship	
Stanford Graduate School of Business, Gukomeza Sprayer team, Technical advisor	2018

TEACHING AND INVITED TALKS

From Combustion Fundamentals to Fire Modeling, Combustion Processes, Cornell University (Guest Lecture)	2024
$Computational\ Fluid\ Dynamics\ in\ C++,\ Computing\ for\ Geomatics\ Engineers,\ U.\ Calgary\ (Guest\ Lecture)$	2023
Fidelity-Adaptive Modeling for Spray Combustion, Saudi Aramco (Invited talk)	2022
${\it Modeling~Hot~Surface~Ignition~with~C++,~Computing~for~Geomatics~Engineers,~U.~Calgary~(Guest~Lecture)}$	2022
Modern Applications of Combustion Science, Combustion Processes, Cornell University (Guest Lecture)	2021
Hot Surface Ignition of Wall-Impinging Fuel Sprays, FM Global Research (Job Talk)	2021
Gas Turbine Design and Analysis, Stanford University (Teaching Assistant)	2020

SKILLS

Technology

Programming: Object-oriented C/C++, Python, Matlab

HPC: MPI, OpenMP, CUDA

Frameworks: Numpy, SciPy, Pandas, scikit-learn, TensorFlow, PyTorch

Toolbox: Linux, vim, git, bash, zsh, slurm, mongodb, Docker

Design: SolidWorks, ANSYS

Experiments: LabVIEW, Arduino

Human Languages

English: Native language French: Fluent (C1/C2 level) German: Fluent (C1 level)

Persian: Fluent (native-level speaking ability, competent in reading and writing)

Interests and Activities

Linguistics, especially phonology and writing systems; poetry and its analysis, especially ancient; history, foreign policy analysis and grand strategy; jiu-jitsu; classical guitar.

Updated: 07/21/2025 Page 6 of 6